
"Where are the data?" Identifying population data to evaluate risk, use, cost and benefit of medical products

ASCPT Workshop: Registries and Databases in Clinical Research

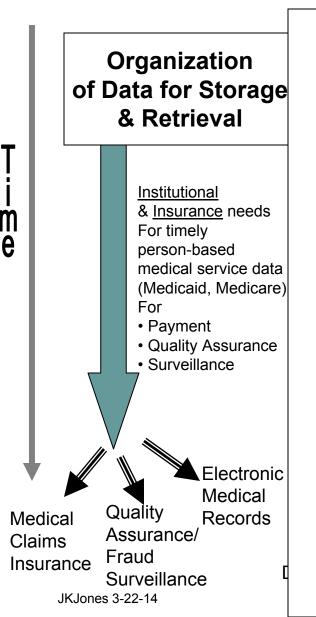
Judith K. Jones, MD, PhD. The Degge Group, Ltd. March 22, 2014



- Dr. Jones is a pharmaceutical consultant and is supported by varied grants and fees from medical product manufacturers. She is president of a company, The Degge Group, Ltd., that is the recipient of these grants and honoraria.
- The presentation today is not supported by any specific commercial entity, but does relate to a nonprofit activity, DGI, LLC. (of which she is Chief Editor) that collects information on healthcare databases.

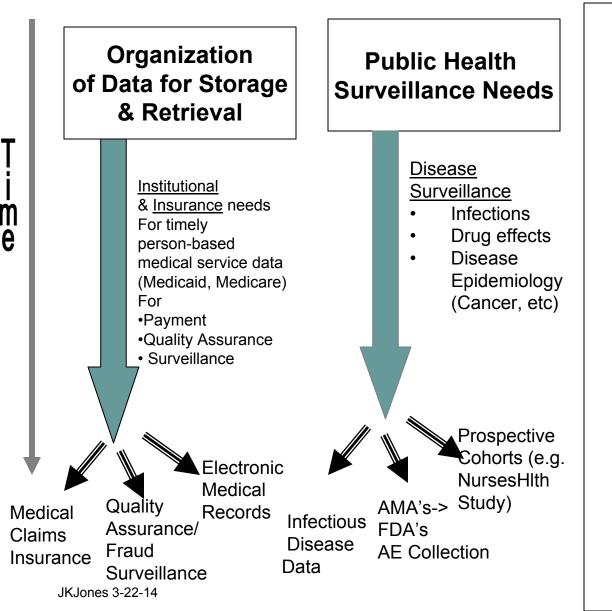
Where are the Data? Goals

- History --How it started—
 - One story, from a drug safety & pharmacoepidemiology perspective
- What we are learning & relevance to
 - Clinical pharmacology
 - Pharmacoepidemiology
 - Pharmacoeconomics
 - Health services research
- "Big Data" is very relevant to All of these areas
- The Future



History: Illustrative Examples

- Conceptualizing public health information needs
 - How to get information?
 - US 1960's: Chloramphenical associated Aplastic anemia: the US initiation of spontaneous reports in the 1960's
 - US 1970's: Looking for different types/sources of data
 - Propoxyphene: petition to withdraw from the market in late 1970's and capturing relevant data. Presentation of Matrix of databases to profile the "Darvon Problem" at Int.Clin. Pharmacology meeting in London, 1979.
 - EU: 1970-80's "Where are the data?"
 - The Subacute Myelo-optic Neuropathy (SMON) epidemic of clioquinol-associated blindness: the stimulus for a global search for data. This resulted in the global RAD-AR effort, later the International Medical Benefit Risk project in Geneva ('90s), later became nonprofit B.R.I.D.G.E. TO DATA in US(2000's to present)...


Drivers for Collection of Medical & Pharmaceutical Data: Utilization, Effects, Outcomes

Drivers for Collection of Medical & Pharmaceutical Data: Utilization, Effects, Outcomes

Drivers for Collection of Medical & Pharmaceutical Data: Utilization, Effects, Outcomes

Public Health Surveillance Needs

Regulatory needs for balanced decisions

<u>Institutional</u>

& <u>Insurance</u> needs For timely person-based medical service data (Medicaid, Medicare)

For

- Payment
- Quality Assurance

Electronic

Medical

Records

Infectious

Disease

Data

Surveillance

<u>Disease</u> Surveillance

- Infections
- Drug effects
- DiseaseEpidemiology(Cancer, etc)

Need for assessing
Safety, efficacy &
Benefit-risk after
Marketing approval
Required "Postmarketing
Surveillance"

Surveillance

Prospective Cohorts (e.g.

AMA's-> NursesHith Study) FDA's

AE Collection

Use &/ or requiring data for regulation

- Clinical trial meta-analyses
- Postmarketing data
- REMS/Risk Mgmt data

Medical Qu Claims As Insurance Fra

Quality Assurance/ Fraud

Fraud Surveillance

JKJones 3-22-14

History

- Conceptualizing public health information needs, specifically,
 - WHAT Information?
 - Demographics (i.e., WHO?)
 - Diagnoses, Procedures, Treatments (i.e., WHAT?)
 - Institutional locus (Office, Hospital, ER) (i.e., WHERE?)
 - TIMING of the information (i.e., WHEN?)
 - What is its Context?
 - Local or Generalizable to the entire population
 - Longitudinal, cross-sectional (or both?)
 - How Valid is the information? Can it be reproduced?
 - Timing of the information relative to other data, e.g., exposure

History

Examples,

- From mid-1960's to mid-1970's: Medical insurance data:
 - Healthcare legislation requires detailed management of insurance data on medical visits, procedures, drugs & hospitalization as well as providers
 - Example: Medi-Cal
 - Use: to identify specialties as well as patterns of prescribing abuse drugs
- HMO data: Kaiser Oakland developing database on member patients-later in contract with FDA

History

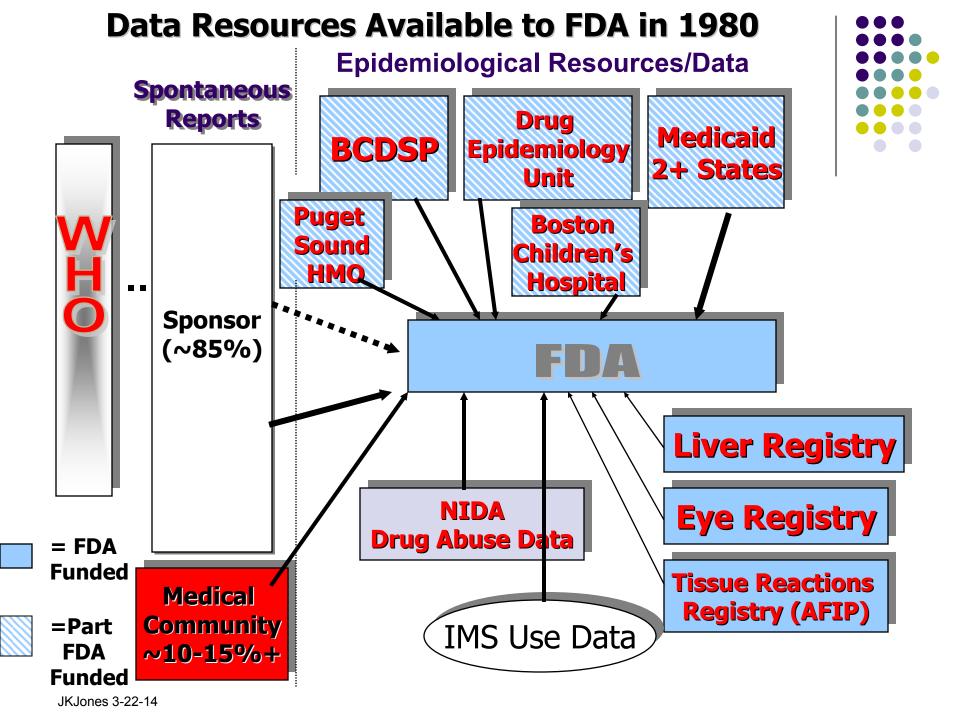
- At FDA
 - Predecessor of AERS database, started in 1969 in part from earlier data from AMA (chloramphenical and other AEs).
 - By 1978, AE database had >200,000 AE reports but reporting only ~12,000 reports/year and access to data via flatfile retrieval (took 24-48 hours).
 - Early 1980's FDA's Drugs & Biologic's Division of Drug Experience collecting data sources, some with <u>known</u> <u>numerator & denominator</u> to complement AE system to evaluate "signals"
 - Medicaid data from Michigan, Minnesota
 - Boston Collaborative Drug Study Program
 - Registries: Liver, skin, Radiologic contrast

US EFFORTS IN POST MARKETING SURVEILLANCE AN HISTORICAL OVERVIEW 1955 1960 1965 1970 1975 **FDA-ASHP-AHA** cooperative effort AMA ADA registry **FDA** spontaneous reporting program **AFIP-Tissue registry to drugs U** of Florida Hospital Surveillance Boston Collab. Surv. Program (BCDSP)-hospital

World Health Organization ADR Surveillance

Yale U. School of Medicine (HMO Pilot)

Contrast Media Registry


Boston Children's Hosp. Surveillance

Drug Epidemiology Unit (DEU)

Eye Registry Liver Registry

Medicaid Data

Others (Kaiser-LA, Olmsted co. Minn, Sasketchewan)

Emergence of Defined Needs for Data

Epidemiology→Pharmacoepidemiology→Pharmacoeconomics

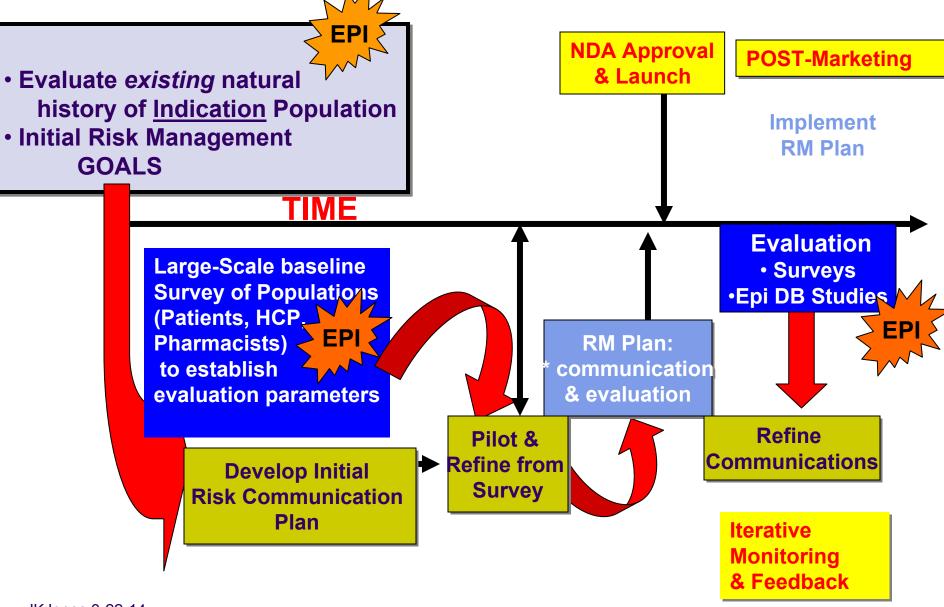
- Spontaneous Reports
- Literature reports
- Case Series

Quantitative > How often does the problem occur? In whom? & Risk Factors.

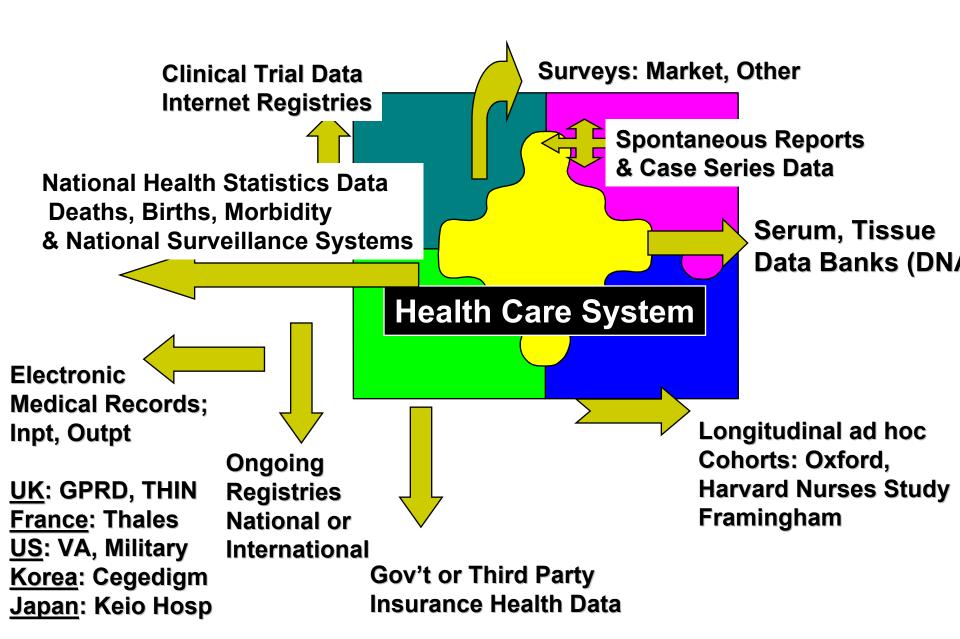
- Ad Hoc for longitudinal cohorts, case control
- Collected for administrative reasons (i.e., insurance claims)

<u>Data with varying details</u>: including demographics, timing & site, diagnoses Therapies & procedures, laboratory tests, physical exam, social status, genetic testing, costs billed, costs reimbursed

Fast Forward to this decade When are the Data Used?



Fast Forward to this decade When are the Data Used?


No longer used only for postmarketing safety studies

- Applications from Pre-clinical to Postmarketing are emerging
 - Premarketing and Early clinical development
 - Profile of the Indication population
 - Evaluation of risks and their measurements in REMS after approval
- Evaluation of potential risks and REMS design can be piloted in Phase III
- Postmarketing studies using databases for:
 - Further evaluation of potential risks
 - Evaluation of REMS effectiveness:
 - Behavior of stakeholders (physicians, pharmacists, patients)
 - Safety, if event or risk factors common & identifiable in database
- Evaluation in Different populations, countries requires multiple databases

Planning for Big Population Data Needs in Drug Development Minimal Role of Big Data...but more opportunity!!

2000+ The Growing Array of Global Health Care Data

Fast Forward to this decade Where are the Data?

Proliferation of many databases and frequent use

- Recognition of the value of population-based data on very large populations,
 - Ex: Sentinel data, Consortia in the EU of multiple database, IMED (former OMOP)
- Epidemiology, Pharmacoepidemiology & Pharmacoeconomic researchers seek multiple diverse global data sources, but need information on their use & limitations
- Electronic data sources expand the breadth of data inquiry

Fast Forward to this decade Where are the Data?

- Resources to <u>locate</u> data appear in
 - International Society for Pharmacoeconomics & Outcomes Research (ISPOR)
 - International Society for Pharmacoepidemiology & Drug Safety (ISPE)
 - EU efforts
 - EnCePP- Identifying qualified databases for EU
 - Innovative Medicines Initiative (IMI) has funded several consortia and databases
 - EUROCAT-consortium of Birth Defect Data
 - B.R.I.D.G.E. TO DATA[®] US based:Subscription Online database of detailed outline of ~230 global population databases

Where are the Data? The RAD-AR Project - now B.R.I.D.G.E. TO DATA®

- In 1987-8, Ciba Geigy's global effort to improve risk assessment & response:
 - The Risk Assessment of Drugs Analysis & Response (RAD-AR) Project.—evolved into the International Medical Benefit Risk Project, a charity in Geneva.
- One aspect was to answer the question: Where are the data? Out of this, what is currently <u>www.bridgetodata.org</u> was launched.
- This project has identified >230 databases in >30 countries
 - Online subscription "database of databases"
 - Profiled using 10 categories and 75 standard subcategories
 - Helps epidemiology, health economic researchers & academics to find optimal databases for
 - Research
 - Teaching tools
 - Template for those developing databases.

B.R.I.D.G.E. TO DATA®

KEY DATABASE FEATURES

- Types of Databases include:
 - Longitudinal Claims & EMR data
 - Drug or Disease specific cohorts
 - Registries
 - National Surveys & National Surveillance Systems
 - Spontaneous Reporting Systems
- ~230 Standardized Database Profiles
- 75 Defined data fields
 - Glossary of database & coding terms (international terms included)
- Profiles from 32 Countries
- Continuously updated

Critical Aspects of large datasets --especially describing healthcare

- What are the functional needs for applying the data to decision-making?
 - For research: timeliness, validity, linkage or integration with contemporaneous dataset

 For healthcare: timeliness, validity, reliability, ease of understanding (amenable to visualization)

Population Medical Data

Health Care Data: Example of a Medical Claims Profile

DATE	Diagnosis	Prescription	Procedure	Result	Provider	Reimb Cost
5/6/07	Osteoarthritis	ibuprofen	Arthroscopy		P13456	300
5/6/07		ibuprofen			P14445	10
5/21/07	Diabetes	glyburide			P14445	20
5/21/07		piroxicam			P14445	25
5/21/07			HGB A1C	7.0	P35499	12
5/21/07			ECG		P14465	60
5/21/07	Arthritis				P13456	75
6/15/07	GI Bleed		Hospitalizatio	n	H33421	5020
6/16/07	Arthritis H33421					
	Diabetes					
	Peptic ulcer					
6/26/07		ranitidine			P14445	40
6/26/07		glyburide			P14445	20
6/26/07		sucralfate			P14445	10

What we are learning

Types of Data

Linkages

Variation in Coding Systems

Needs for conformity & standards

Types of Data

Table 1. Examples of Data Fields Used in Profiles (by Category) Category Data Fields					
Summary	Database description, Database source, Years covered, Population type, Date of last update				
Population Dynamics	Population size, Sample weights – Extrapolation factors				
Demographic Data	Age, Gender, Date of birth, Death recorded, Other demographic data				
Physician & Practitioner Info	Physician ID & Specialty, Pharmacy ID				
Diagnoses/Signs & Symptoms	Diagnosis data, Diagnoses coded (coding systems), Max. number of codes, Physical exam findings, Environmental exposures, Behavioral data elements				
Procedures	Procedure data, Procedures coded (coding systems), Laboratory information				
Drug Information	Drug data, Drug dosage, Drug coding system(s), Additional drug information				
Economic Data	Type of cost data (if applicable)				
Validation & Linkage	Data validation, Access to medical records, Linkage to other databases				
Administrative Data	Database contact data, Database usage restrictions, References of studies using/describing the database				

Types of Databases

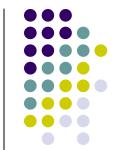
Specific types of Databases

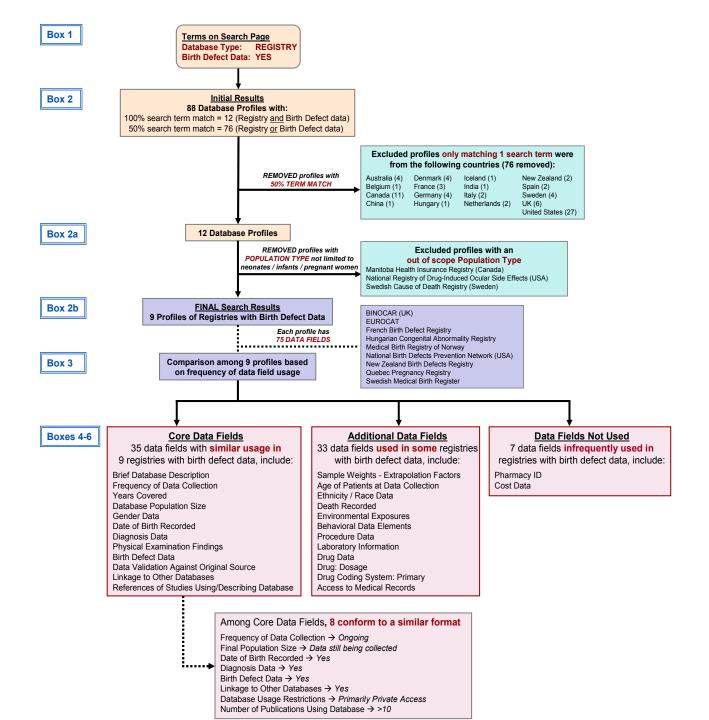
Longitudinal Claims & EMR data

- Examples: GPRD & THIN in UK, DOD, VA Regenstrief in US
- Most common, flexible-captures much data
- Data collected prior to hypothesis so some bias decreased

Drug or Disease specific cohorts

Two armed for comparison, or one-armed (old PMS cohorts)


Registries


Common method for rare disorders and risk management:
 Birth Defects, rare diseases, ways to observe treated population

National Surveys & National Surveillance Systems


Common in many countries for birth defects, cancer, infectious disease

Spontaneous Reporting Systems

Data Linkages

Types of Database Linkages

A1. Direct Linkages

- Insurance DB to Cancer Registry
- MRFIT to Nat Death Index

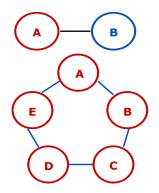
A2 Multiple Direct Links

- Norwegian Dbs
- Manitoba Hlth

B. Indirect Linkages

Iceland→Approval→
 Death Registry

C. Formed by Linkage


- C1. Combination of DB Subsets
 - SEER
 CA registry to
 Medicare

C2. Merged Databases

 Combined single Registries, i.e., NARCOM (US)for

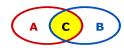
MS. JKJones 3-22-14

A. Direct Linkage (n=81)

- A.1 Direct Linkage (DB 'A' links to DB 'B')
- Korean Health Insurance Review Agency (HIRA)
 Database links to Korea Central Cancer Registry
- Multiple Risk Factor Intervention Trial (MRFIT) links to National Death Index (NDI)

A.2 Multiple Direct Linkage (Network of linkages across DBs 'A' through 'E')

- Norwegian national registers
- Manitoba Population Health Research Data


B. Indirect Linkage (n=18)

(Linking DB 'A' to DB 'B' requires an extra step)

- Icelandic Cancer Registry needs approval prior to linkage of datasets to Cause of Death Registry

C. Formed by Linkage (n=38)

- C.1 Combination of Database Subsets (DB 'A' subset links to DB 'B' subset to form new DB 'C')
- SEER Medicare Database (USA) linkage of SEER cancer registries data, and the Medicare enrollment and claims files
- **C.2 Merged Databases** (DB 'A' merges with DB 'B' to form new DB 'C')
- North American Research Committee on Multiple Sclerosis (NARCOMS) Registry formed by multiple regional MS registries
- AIHW National Diabetes Register (Australia) formed by the National Diabetes Services Scheme database (NDSS) and the Australasian Paediatric Endocrine Group's (APEG) state and territory databases

Patient-centered Data

Perspectives on a Patient: The many dimensions of Big Healthcare Data

National, global population data

- Effective treatments
- Outcomes
- Economic, etc.

Local epidemiologic data

- Rates
- Outcomes
- Economic, etc.

Disease data

- Natural History
- Prognosis
- Treatment options & data/.

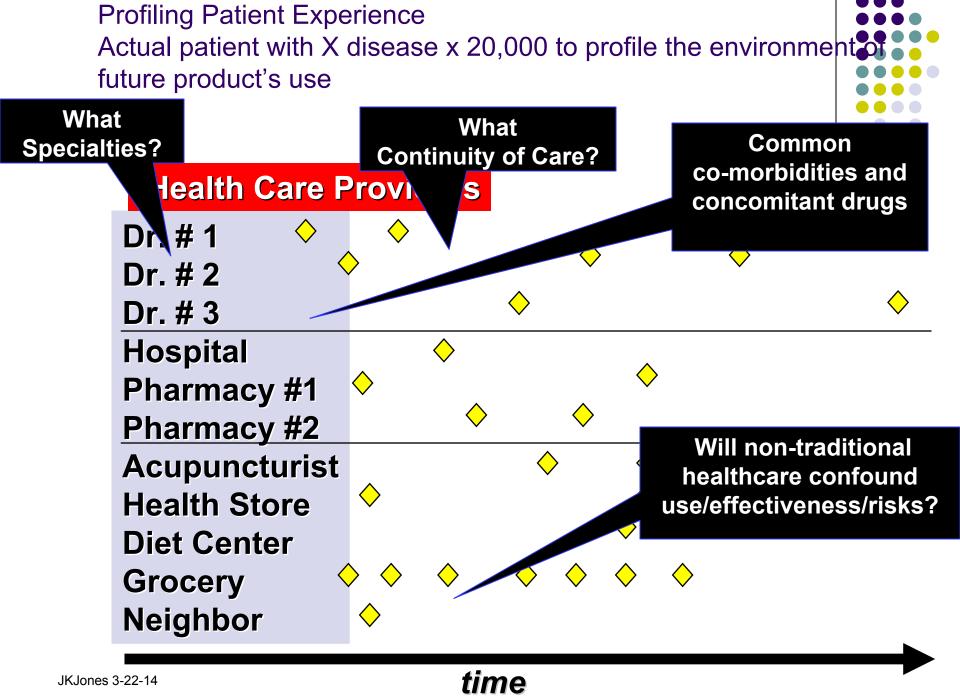
Institutional data

- HCPs
- Surgical
- Economic, etc.

Laboratory data

Radiology data

Therapeutic data


- Biopharmaceuticals
- Surgical, Devices
- Economic, etc.

Pathology data

Electron Microscopy data

Genetic data

Microbiome data

The Future

- More diverse use of DBs for decision-making in both practice & commercial setting (e.g., throughout the cycle of medical product development) and importantly, public health.
- As DB's proliferate, essential need for standardization of:
 - Coding systems & definitions
 - DB structure

The Future

- Greater awareness & standardization will support:
 - Development of new, more useful DBs for public health and practice uses
 - Support for the practice of multi-country studies and standardization will facilitate meta-analyses
 - Focused product development, planning for risk management and surveying postmarketing for use, risk & benefit

Thank you & Credit to my database team:

- Anokhi Kapasi PhD
- Sharmila Kamani
- Dave Honig
- Varinder Singh
- Bao Nguyen, PharmD, MPH
- Earl Goehring